
HTTP/ 2 is the second version of the
hypertext transfer protocol and brings
two significant improvements: more
efficient network resource usage and
reduced latency.
Latency (the elapsed time between
the user sending a request to the
server and receiving the response)
can either increase or decrease ac-
cording to the way network resources
are handled, so higher latency means
a longer wait for the user.
To reduce latency, HTTP/ 1.1 imple-
mented a request pipelining tech-
nique, allowing TCP connections to

send multiple requests without wait-
ing for a response. However, although
request pipelining facilitates concur-
rency, it does not avoid head-of-line
(HoL) blocking, which occurs when
a single data packet queue blocks
subsequent transmissions while wait-
ing for a response. This phenomenon
affects both the TCP and HTTP proto-
cols, so it appears at both the Trans-
port and Application layers of the
TCP/ IP protocol stack.
HTTP/ 2 solves the HoL blocking is-
sue for HTTP at the Application layer,
improving concurrency and reducing

latency. For that reason, setting up
HTTP/ 2 will enhance the performance
of the websites running on your server.
If your website uses PHP, however,
you’ll need to go to a little more ef-
fort. The HTTP/ 2 protocol on the
Apache HTTP Server requires a con-
ventional multiprocessing module
(MPM) such as MPM Event. The
problem is that the default PHP bi-
nary for Apache installs MPM Prefork
as a dependency, which is not com-
patible with the HTTP/ 2 protocol.
A straightforward approach to solv-
ing the PHP compatibility issue is to

If you are running PHP applications, setting up HTTP/ 2 on the Apache HTTP Server can be a bit confusing
because of some incompatibilities between the Apache HTTP/ 2 module and the Prefork multiprocessing module.
By Eugenia Bahit

Setting up HTTP/ 2 on the Apache HTTP Server
with PHP compatibility

 Reconciled
Ph

ot
o

by
 A

ve
 C

al
va

r
on

 U
ns

pl
as

h

2 A D M I N 76 w w w. A D M I N - M AgA z I N E .co M

HTTP/2onApacheN u Ts A N d B o lTs

replace the default PHP module with
FastCGI and configure Apache to
work with MPM Event.
The following guide is tailored to
Debian 11 and PHP 7.4, but you can
adapt it by applying minor changes,
which you can find in the correspond-
ing steps.

Installing MPM Event

As mentioned earlier, the goal is to
install MPM Event and then replace
the default PHP module with FastCGI
before configuring HTTP/ 2.
When the server is already running
MPM Prefork, it is not possible to
enable MPM Event simultaneously.
You need to disable Prefork. Because
Prefork is a PHP package dependency,
you must disable PHP before dis-
abling Prefork.
On the other hand, because you
need to make several changes to
the Apache HTTP Server, stopping
Apache to ensure a seamless process
is recommended.
Table 1 show the steps to install MPM

once, handling the subsequent HTTP
requests without the need to start
again.
Installing FastCGI on Apache HTTP
Server to run PHP web applications
requires four packages:
n The PHP FastCGI binary (note that

it is not an Apache module but a
PHP interpreter)

n The FastCGI module for Apache
n The Proxy module (see the “Im-

portant Proxy Module Note” box),
an Apache requirement when us-
ing FastCGI

n The FastCGI Proxy module, an-
other Apache requirement when
using FastCGI

Table 2 shows the steps to install
FastCGI to run PHP applications. As
mentioned earlier, the PHP version
varies according to the operating sys-
tem version. Because FastCGI Proxy
enables the Proxy module, you only
need to enable the second to enable
the first, as well.

Setting Up HTTP/ 2

Now, it’s time to finish the entire
process by setting up HTTP/ 2 on
Apache in three steps (Table 3). It
is important to note that you should
not execute the steps in Table 3 if
you have not previously installed
MPM Event and FastCGI, as shown
previously.
The HTTP/ 2 module shown in step 1
is already available in the Apache /
mods‑available/ folder, but it is not
enabled. No additional installation is
needed. Just run the a2enmod Debian
command.
The Apache Protocols directive sets
one or more allowed HTTP protocols,
as shown in Table 3, step 2. You will
prefer both if you serve web applica-
tions under HTTPS and HTTP (rec-
ommended option), or choose only
one in other cases.

Event on Apache. The PHP version
varies according to the operating
system version. Commonly, it is ver-
sion 7.0 for Debian 9, version 7.2 for
Debian 10, and version 7.4 for Debian
11, although it could be any previ-
ously installed or manually compiled
version. You can find the current ver-
sion by looking for it in the Apache
mods‑enabled folder:

ls /etc/apache2/mods‑enabled/ | grep php

Note that if you get an empty an-
swer, it could be because the PHP
module is already disabled. In that
case, verify whether fcgid is en-
abled instead.

Installing FastCGI and PHP
FastCGI Module
FastCGI is a high-performance com-
munication protocol derived from the
common gateway interface (CGI).
Although the information handled by
both interfaces is the same, FastCGI is
faster than CGI because of how it pro-

cesses the data.
Although a CGI
application starts
and finishes with
the beginning
and end of each
HTTP request, a
FastCGI applica-
tion starts only

Table 1: Install MPM Event

Step Command

1. Stop Apache systemctl stop apache2

2. Disable PHP a2dismod php7.4

3. Disable MPM Prefork (if enabled) a2dismod mpm_prefork

4. Enable MPM Event a2enmod mpm_event

5. Restart Apache systemctl start apache2

Important Proxy Module Note

Ensure that the ProxyRequests directive
remains Off. If it is not, Apache could be
used as a forward proxy server, which would
be unsafe for both your server and network
if you do not control who can access it by
using the <Proxy> control block [1].

Table 2: Install FastCGI

Step Command

1. Install PHP FastCGI apt install php‑fpm

2. Install the Apache FastCGI module apt install libapache2‑mod‑fcgid

3. Load the PHP FastCGI configuration a2enconf php7.4‑fpm

4. Enable Proxy and FastCGI Proxy modules a2enmod proxy_fcgi

5. Restart Apache (or keep working until the
end of this example)

systemctl restart apache2

Table 3: Set Up HTTP/ 2 on Apache

Step Command

1. Enable the HTTP/ 2 module a2enmod http2

2. Add (or modify) the Apache Protocols directive

 Default http/1.1

 HTTP/ 2 over TCP h2c

 HTTP/ 2 over TLS h2

3. Restart Apache systemctl restart apache2

3A D M I N 76w w w. A D M I N - M AgA z I N E .co M

N u ts a N d B o ltsHttP/ 2 on apache

The order of priority protocols is
defined by the order in which you
write the protocol values in the
Protocols directive, prioritizing the
server configuration over that of the
client. If you do not want to do that,
you can explicitly set the Protocol‑
sHonorOrder directive to Off so that
the client preference will be priori-
tized over that of the server.
Both directives can be set at the
server configuration or virtual host
level, allowing you to serve some
websites while enforcing a specific

protocol order. For the purpose of this
example, I set only the Protocols di-
rective at the configuration file level.
Open the Apache configuration file
(commonly located in the path /etc/
apache2/apache2.conf) and add the fol-
lowing instruction at the beginning:

Protocols h2 h2c http/1.1

This line indicates that HTTP/ 2 over
TLS has precedence over HTTP/ 2
over TCP, which has precedence over
HTTP/ 1.1.

After restarting Apache, you can test
your websites with curl by forcing it
to use the HTTP/ 2 protocol,

curl ‑I ‑‑http2 <URL>

where <URL> is the URL you want to
test – or http:// localhost if you have
not yet configured one.

Troubleshooting and
Reverting
If for any reason you need to revert
the entire previous process, follow the
step-by-step guide in Table 4. n

Info

[1] Controlling access to your proxy:

[https:// httpd. apache. org/ docs/ 2. 4/ mod/

 mod_proxy. html# access]

Table 4: Reverting

Step Action

 1. Stop Apache to ensure a seamless
reverting process

systemctl stop apache2

 2. Delete the Protocols directive Open the Apache config file (/etc/apache2/apache2.
conf) and remove the line Protocols h2 h2c
http/1.1

 3. Disable the HTTP/ 2 module a2dismod http2

 4. Disable the Proxy module a2dismod proxy

 5. Disable FastCGI Proxy module a2dismod proxy_fcgi

 6. Remove the PHP FastCGI
configuration file

a2disconf php7.4‑fpm (remember to change the PHP
version to your current number)

 7. Disable MPM Event a2dismod mpm_event

 8. Enable MPM Prefork a2enmod mpm_prefork

 9. Enable the original PHP module a2enmod php7.4 (remember to change the PHP version
to your current number)

10. Start Apache again systemctl start apache2

The Author

Eugenia Bahit (she/ her)

is a theoretical computer

scientist and bilingual science

writer specializing in Linux

programming, software

engineering, and high-performance computing.

n

4 A D M I N 76 w w w. A D M I N - M AgA z I N E .co M

HTTP/2onApacheN u Ts A N d B o lTs

